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Abstract. Discontinuous irreversible phase transitions (IPTS) from active states to absorbing 
(poisoned) states in a himolwular irreversible reaction model, which involves one monomer 
and WO different dimers, are studied by means of Monte Carlo simulations. Evaluated dynamic 
critical exponents strongly suggest that each Am-order ~ P T  has its own universality class. 

1. Introduction 

The study of irreversible phase transitions (IPTS) in reaction systems has attracted growing 
attention due to their interest in many branches of science and technology: physical 
chemistry, biology, astrophysics, ecology, catalysis, etc. One of the major achievements 
in the study of these irreversible critical phenomena is the discovery that continuous Ins 
belong to the same universality class, namely that of directed percolation (DP) or Reggeon 
field theory ([l-71, and references therein). It is known that, on the one hand, many 
models satisfy the DP universality class ([l-71, and references therein), but on the other 
hand counter-examples have been found 18-1 11. In coneast to the important advance in the 
understanding of continuous IPTS, the study of discontinuous (first-order) IFTS is still in its 
infancy. For example, Evans et a2 [12,13] have evaluated critical exponents characteristic 
of the first-order IPT of the ZGB model [14]. Also, we have evaluated the same exponents for 
various models exhibiting a single (trivial) critical point [15]. The results obtain1:d indicated 
that all transitions belong to different universality classes 11.51. 

Within this context, the aim of the present work is to determine critical exponents 
characteristic of the first-order IPTS of a recently proposed trimolecular (TM) model. For 
some particular choice of the parameters, the studied model maps into both the zGB [ 141 and 
the dimerdimer (DD) [I6191 models. Therefore the evaluation of their criticd exponents 
would also allow us to gain insight into the crossover between both models. 

2. Description of the model and the simulation method 

The reaction model involves one monomer (A) and two dimers (Bz and Cz), so it is a TM 
reaction system. The TM surface reaction schema is based upon the Langmuir-Hinshelwood 
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mechanism, i.e. all reactants are adsorbed on the surface. Then, it is assumed that the 
reaction occurs according to the following steps: 

where (*) denotes a vacant site on the catalyst surface, while (a) and (g) refer to the adsorbed 
and gas phases, respectively. Equations (la), (16) and (Id) correspond to the oxidation of 
carbon monoxide (the ZGB model [3,4,12-141). i.e. A = CO, BZ E 02 and AB E COz. 
Furthermore, equations ( lb) ,  (IC), (le) and (18 correspond to the oxidation of hydrogen 
(the DD model [16-19]), i.e. Bz E 0 2 ,  CZ = H2 and CzB = HzO, which also involves the 
formation of the intermediate adsorbed species BC = OH. 

Surface sites can be empty or occupied by A, B, C and BC species. The gas phase in 
contact with the catalyst surface is assumed to be kept at constant pressure and composition 
of A, Bz and Cz molecules. So, the respective rate of anival and subsequent sticking 
coefficients are YA, YB and yc, which are normalized such that YA + YB + yc = 1, and 
consequently one can use only two parameters, namely y~ and yc.  Note that for yc = 0 
(YA = 0) one recovers the ZGB [I41 (DD [16-191) model, respectively. 

The TM reaction is simulated on the homogeneous square lattice of side L = 200 
using periodic boundary conditions. The simulation algorithm may be briefly summarized 
as follows. (i) A site (say site 1) of the surface is selected at random. (ii) If the site is 
occupied the trial ends. Otherwise, if the site is empty a molecule of type A, C, or Bz is 
selected at random with probabilities YA, yc and y~ = 1 - yc - YA, respectively. (iii) If 
the selected species is a monomer, it is adsorbed on the site and the corresponding four 
nearest-neighbour (NN) sites are checked for the presence of B(a) in order to satisfy equation 
(Id). (iv) If the selected species is a dimer then one has to select at random a NN site (say 
site 2). If site 2 is occupied the trial ends because there is no place for dimer adsorption. 
Otherwise, the dimer i s  adsorbed and the corresponding six NN sites are checked for the 
presence of A(a), B(a), C(a) and BC(a) in order to satisfy equations (ld)-(lj). A random 
decision is taken when more than one reaction path is possible. After reaction the products 
are removed from the surface. Further details on the simulation algorithm follow from the 
description of both the ZGB [3,4,12-141 and the DD [16-181 models. 

The Monte Carlo time unit is defined such that each site of the surface is visited once, 
on average. 

3. Results and discussion 

3.1. The phase diagram of the TM model 

Taking yc = 0 the TM model is mapped onto the ZGB model [14]. That is, for YIA 6 0.3905 
( y a  2 0.525) the surface becomes fully covered by B (A) species, respectively. That 
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is, the system becomes irreversibly poisoned by the reactants and the production of AB 
stops. These poisoned states are unique in the sense that they correspond to a single 
configuration of the covered surface. Within the interval Y ~ A  < YA < y x  one observes 
sustained production of AB, and therefore both Y ~ A  and y w  are critical points at which 
irreversible phase transitions between the reactive regime and poisoned states of the surface 
take place. The transition at YIA is continuous (second order) while the transition at y 2 ~  is 
discontinuous (first order). The ZGB model corresponds to the horizontal axis in figures l(a) 
and l(b); for additional details see [14]. 
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YA 

Figure 1. (a) Plot of the critical poink yc versus y~ of the m model: e, second-order Im; 
0. first-order ~ m .  (b) Detailed view of (a) in the yc + 0 limit. 

On the other hand, taking YA = 0 the I'M model is mapped onto one variant of the DD 
model termed MI in reference [17]. Now one has a single critical point at ylc = $ such that 
for yc < ylc  (yc z ylc) the surface becomes poisoned by a binary compound of (B + BC] 
species (B-species), respectively. The transition at ylc is of first order. Note that in this 
case the poisoned states are non-unique. In fact, on the one hand, one has an infinity of 
possibilities to construct the binary compound; for a detailed discussion on the nature of the 
binary compound see [ 16-1 81. On the other hand, since the I'M model neglects the diffusion 
of the reactants the poisoned state with B-species is jammed, i.e. a unitary coverage cannot 
be achieved due to spatial restrictions for dimer adsorption [17], so one has again infinite 
different poisoned states. The DD model corresponds to the vertical axis of figure l(a); for 
additional details see [1&19]. 

Taking both YA t 0 and yc 0 one can cons!mct the complete phase diagram of the 
m model, as shown in figure l(a). The solid circles in figures l(a) and l(b) indicate 
second-order IPTS from poisoned states with binary compounds of [B +BC] species and the 
reactive regime with production of both AB and C2B species. The surface coverage with B 
and BC species within the poisoned states depends on both y~ and yc, and these states are 
non-unique. Open circles in figures l(a) and l (b )  show first-order ~prs from the reactive 
regime to poisoned states with [A + B + AB] species. Again, these states are non-unique 
and the concentration of the species also depends on both YA and yc. From figure l(a) it 
follows that in the presence of traces of C (yc + 0) the first-order IR characteristic of 
the ZOB model (yc = 0) becomes drastically shiftd towards lower YA values. In fact, it 
seems that several open circles may lie along the yc = 0 line. This behaviour can better 
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be understood after inspection of the figure I(b), which shows the phase diagram of the 
TM model in the limit yc 4 0. On the other hand, in the limit YA 4 0 the first-order and 
second-order transitions are very close, collapsing in a single critical point just at YA = 0. 
For YA > 0 the thin intermediate region between the two phase boundaries corresponds to 
the reactive state with production of both AB and CzB species. Of course, the amount of 
C2B (AB) increases (decreases) when approaching the limiting value y~ = 0. Just at y~ = 0 
one has only C2B production during a transient period because it is believed [I6481 that 
in the t -+ CO limit (and even for L = CO) the final state of the lattice will be a poisoned 
one with either the binary compound or B-species. 

The critical points of the phase diagram of figures l ( a )  and l ( b )  are determined by 
studying the poisoning dynamics as described below. Further details on the phase diagram 
of the TM model have already been published [ZO]. 

3.2. Evaluation of dynamic critical exponenrs at the discontinuous Ins 

It has been established that a fruitful approach to gain insight on the universality class of IpTs 
is to calculate exponents related to the time-dependent critical behaviour of the process 14- 
8,10,12,13,15]. For this purpose one proceeds as follows. Simulations s t a t  with lattices 
completely poisoned except for a blob of empty sites at the centre of the sample. Then, 
the time evolution of the blob embedded in the poisoned state is monitored. The measured 
quantities are: (i) the survival probability P ( t ) ,  that is, the Fobability that the sample was 
not poisoned after t time steps; and (ii) the average number of empty sites N ( t ) .  Averages 
are taken over K independent realizations (or runs). Each run proceeds until some fixed 
maximum time tM, unless the sample becomes poisoned before t M .  At the critical point and 
in the t + CO limit it is expected that the following scaling laws should hold 

P ( t )  a: t - 6  (2) 

and 

So, the asymptotic slopes of log-log graphs of equations (2) and (3) define the 
dynamic critical exponents 6, and 11, respectively. Let us note that working with a unique 
absorbing state the construction of the starting (poisoned) configuration is straightforward. 
Nevertheless, in the case of non-unique absorbing states the initial configuration to be used 
in time-dependent simulations has to be generated running the system within the poisoned 
phase but close to critically, in order to have not only the proper particle coverage but also 
to allow the system to build up the correct correlations on its own [6,15]. 

Figures Z(a) and 2(b) show log-log plots of P ( t )  and N ( t )  verses t obtained assuming 
yc = 0.10 and scanning YA close to the critical value. For YA = 0.355 (YA = 0.365) 
one has that N(r) veers downwards (upwards) in the h i t  t 4 lo3, suggesting that these 
YA values are slightly off critically. In contrast, for y.~. = 0.360 a power law decay is 
observed according to equation (3). A similar behaviour is observed for the curve P ( t )  
versus t (figure 2(a)). Using this procedure we determine the critical point at yc = 0.10 
and YA E 0.360 f 0.005, and the corresponding critical exponents are listed in table 1. 

In order to study the critical behaviour of the TM model, critical exponents are 
also calculated at different critical points (see figures 3 and 4). Figures 3(a) and 3(b) 
have been obtained taking yc = 0.30 and scanning YA. The critical point is close to 
YA S 0.2250 zk 0.0025, since YA = 0.2275 is clearly off critically as follows from the 
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Figuq 2. Log-log plots of (U) PO) and ( b )  N(r) versus r. respectively. Resula obtained MI 
yc = 0.10 and diffmt choices of YA are, f” boaom m top: YA = 0.355. 0.360. 0.365 
and 0.370. Averages are taken over K = 5 x IO4 independent mns up to 1~ = id. critical 
exponents listed in table 1 are obtained fining the mymptotic regime of the m e  emponding 
to y~ = 0.360. For further details, see the main text, 
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Table 1. List of critical points (YA. yc) and the corresponding dynamic critical exponents for 
the TM model discussed in the text. The quoted ermr ranges merely reflect the stalistical mor. 

Y A  YC 6 Reference 

0.00 U3 0.920,f 0.001 -0.25 fO.03 [15] 
.0.05 0.5763 3.377 3 0.134 -1.750 & 0.053 Pw 
0.2250 0.30 2.782 f 0.054 -1.756 f 0.035 PW 
0.3600 0.10 1.533.30.040 -0.92630.044 , PW 
0.525 0.0 3.70 -2.20 [12.131 
0.3905 0.0 0.452 rt 0.008 0.224 5 0.01 [41 

PW, present work. 

Figure 3. Log-log plots of (a) P I  and (b) N ( t )  v m s  I, respectively. Results obtained for 
yc = 0.30 and WO different choices of y~ are. from bottom to top: y~ = 0.225 and 0.2275. 
Averages are taken over K = 5 x IO' independent mns up t o y  = io'. critical exponents listed 
in table 1 iue obtained fitting the asymptotic regime of the cuwe corresponding to y~ = 0.225. 
For furlher details, see the main text. 

figures. The obtained critical exponents are listed in table 1. A similar study has been 
performed at y~ = 0.05 and scanning y c  (figures 4(a) and 4(b)). The obtained results are 
also listed in table 1. 

For the sake of comparison, table 1 also contains the critical exponents of both the DD 
model (YA = 0 and y c  = 5) [15] and the ZGB model (YA 10.525 and yc = 0) [12,13]. The 
exponents characteristic of the continuous I f T  of the ZGB model (YA 10.3905 and y c  = 0) 
[4] are are also listed in table 1. These exponents correspond to the DP universality class. 

Due to the lack of a satisfactory theory capable of describing first-order irreversible 
phase transitions in reaction systems the explanation of the obtained results on the basis of 
analytical arguments is not possible. However, the physical picture behind the performed 
epidemic analysis can be understood in tenus of the description outlined by Evans et al 
[IZ]. Our epidemic analysis reveals that, within the reactive regime but even very close to 
the critical point, most of the initially empty blobs embedded in the poisoned state becomes 
quickly poisoned (e.g. see figure 2(a)). However, later on, a few surviving epidemic blobs 
eventually prevail, spreading the reactive steady state across the entire sample (e.g. see 
figure 2(b)). The large positive &values and the large negative q-values (see table 1) reveal 
a greatly reduced epidemic survivability. In contrast. the conventional epidemic behaviour 



Universality classes 3757 

Figure 4. Log-log plots of (a )  P ( r )  and (b) N ( t )  versus t, respectively. Results obtained 
for y~ = 0.05 and different choices of yc are, from lwttom to top: yc = 0.5763 and 0.5775. 
Averages are taken over K = 5 x 104 independent runs up to tM = IO3. Critical exponents listed 
in table 1 are obtained fining the asymptotic regime of the curve corresponding to yc = 0.5763. 
For further details, see the main text. 

characteristic of DP-type continuous transitions produce small positive values for 8 and 11 
(see table 1). 

After inspection of the exponents listed in table 1 it also follows that all discontinuous 
IFTS have different critical exponents, indicating that each transition has its own universality 
class. Furthermore, the crossover of the critical exponents, from the ZGB to the DD 
model. does not follow a monotonic behaviour. These results point out that the theoretical 
description of discontinuous IPTs has to be much more complex than that of continuous 
IPTS. The fact that the poisoned states are non-unique (except for yc = 0) and that the 
concentrations of poisoning species are different at each IPT may play a relevant role in~the 
case of discontinuous IPTs since the concentration of these species may have a considerable 
effect on the survival probability of the empty blobs and the subsequent epidemic spreading 
of the reactive regime. In contrast, it has been found very recently that continuous IpTs in 
non-unique poisoned states also belong to the DP universality class. This statement holds 
for both single component and multicomponent reaction systems, e.g. as in [6] and [7], 
respectively. 

4. Conclusions 

Dynamic critical exponents of first-order irreversible phase transitions of a TM reaction 
model have been evaluated. Since all transitions have different exponents it follows that 
each transition has its own universality class. This behaviour is in contrast to the second- 
order transitions which belong to the DP universality class [7]. These results indicate that the 
critical behaviour of discontinuous transitions is far more complex than that of continuous 
transitions and therefore deserves further studies. 
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